CGP 6809, a sugar-containing nitrosourea derivative: pharmacological and physicochemical properties

Klaus Schieweck¹, Jaroslav Stanek¹, Peter M. Kanter², Karl H. Schmidt-Ruppin¹, Marcel Müller¹, and Alex Matter¹

- Pharmaceutical Research Department Ciba-Geigy Ltd., Basel, Switzerland
- ² Department of Experimental Therapeutics, James T. Grace Jr. Cancer Drug Center, Roswell Park Memorial Institute, Buffalo, NY, USA

Summary. CGP 6809 is a water-soluble nitrosourea derivative with quite distinct chemical and biological properties as compared with the well-known representatives of this class of compounds. It is related to the antibiotic streptozotocin, from which it is distinguished in the structure of the sugar moiety and the position of the methylnitrosourea residue. CGP 6809 possesses practically the same alkylating potential as streptozotocin; however, its carbamoylating activity is comparable with that of CCNU. In contrast to other nitrosourea derivatives, CGP 6809 showed relatively little activity in murine leukemias but was markedly active in solid transplantable melanomas (Harding-Passay, B16), in the 11095 prostate carcinoma, and in a substrain of Yoshida hepatoma (AH 7974) resistant to BCNU and CCNU. In the Ehrlich and Yoshida ascitic tumors complete responses were seen with no toxic death. Dose-dependent activity was found in the human lung carcinoma MBA 9812 and almost complete growth inhibition was achieved in the human melanoma WM 47 by both the oral and parenteral routes of administration. However, mammary tumor lines (Ca 755, 2661/61, R-3230AC), the Guerin-T8 uterus epithelioma, and the Rous sarcoma/S-R proved to be relatively refractory to this drug. This was also the case for the Lewis lung carcinoma implanted i.m. or s.c. However, development of lung metastases was markedly inhibited. Combination therapy using CGP 6809 with cyclophosphamide, 5-fluorouracil, or chlorambucil in the same model led to partial responses of the primary tumor as well as almost total eradication of lung metastases.

Introduction

Since the observation in the early 1960s that N-nitrosourea (NMU) can increase the life span of mice with i.p. or intracerebrally implanted leukemia L1210 [17], nitrosoureas have become a family of antitumor drugs. Through structure variation and optimization of NMU, more lipophilic and alkylating chloroethylnitrosoureas such as BCNU, CCNU, and MeCCNU were developed, which have shown considerable antitumor activity in a variety of experimental [13] and human malignancies [10]. Unfortu-

nately, delayed and cumulative hematologic toxicity has limited the clinical use of these drugs.

The discovery of the antibiotic streptozotocin, with reduced myelosuppression and pronounced antitumor activity in experimental models [21], led to the synthesis of a new series of hydrophilic nitrosoureas with and without sugar carriers. Some of them, such as ACNU, GANU, RFCNU, TA-077, and chlorozotocin have shown marked activity against a broad spectrum of transplantable solid and ascites tumors and leukemias in mice and rats [1, 12, 16], proving to be active in clinical trials [10]. These nitrosourea derivatives differ from each other in their therapeutic activity in animals and humans. However, they all share the alkylating 2-chloroethyl group as the active moiety and can cross-link nucleic acids [3].

In this paper we report on the antitumor activity, tolerability, and physicochemical properties of CGP 6809, a water-soluble methylnitrosourea derivative. Parts of these results have been presented in a preliminary form [14].

Materials and methods

Chemicals. CGP 6809 (ethyl-6-deoxy-3,5-di-O-methyl-6-[3-methyl-3-nitrosoureido]-α-D-glucofuranoside) (Fig. 1) was synthesized in the chemical research laboratories of Ciba-Geigy Ltd. (Basel, Switzerland). BCNU and CCNU were obtained by courtesy of Bristol Laboratories (Syracuse, N.Y.). Streptozotocin (Sigma), cyclophosphamide (Endoxan; Asta), 5-fluorouracil (Fluoro-Uracil; Roche) and chlorambucil (Leukeran; Wellcome) were purchased from commercial sources.

Determination of stability in aqueous solution. The stability of CGP 6809 in aqueous solutions was determined in anal-

Fig. 1. Structural formula of CGP 6809: $C_{12}H_{23}N_3O_7$; ethyl-6-de-oxy-3,5-di-O-methyl-6-(3-methyl-3-nitrosoureido)- α -D-glucofuranoside

ogy to a previously published procedure of Wheeler et al. [23]. Aliquots (60 mg/3.0 ml) of aqueous solutions of CGP 6809 were diluted with 25 ml buffer solutions (Titrisol; Merck) of pH 2.0–8.0 and kept at $30^{\circ}-80^{\circ}$ C. Periodically, UV absorption was measured or samples were subjected to high-pressure liquid chromatography on a Nucleosil 10 C 18, $200\times6\times4$ mm column, with 0.5% ammonium sulfate in water/acetone (750/250) as mobile phase. The intact compound was detected by UV absorbance at 228 nm and the half-lives were calculated from the drug concentrations at various times.

Determination of carbamoylating activity. The carbamoylating activity of CGP 6809 was determined in comparison with CCNU against 2-phenylethylamin instead of the commonly used L-lysine [11]. For preparation of the buffer solution, 2.83 ml 2-phenylethylamin (Fluka, purum) was stirred into 430 ml phosphate buffer (pH 6.0) to adjust the pH to 7.4. This mixture was diluted with 570 ml ethyl alcohol (Fluka puriss. p.a., Ph. Helv.) and made up to 1,000 ml with approximately 40 ml double-distilled water; 20 ml buffered solution was transferred to each of two white 50-ml pill vials equipped with magnetic stirring devices and heated to 37° C. Under stirring, 145 mg (0.45 mmol) CGP 6809 was added to one vial and 105 mg (0.45 mmol) CCNU to the other. CGP 6809 dissolved immediately, and CCNU, within 5 min. The solution was stirred for 24 h at 37° C and freed of alcohol. The resulting products were extracted with chloroform, crystallized, and analyzed.

Determination of alkylating activity. The alkylating activity of CGP 6809 was determined by color reaction with 4-(4-nitrobenzyl)-pyridine according to the procedure of Wheeler et al. [23]. A mixture of 2.0 ml water, 1.0 ml acetate buffer (0.025 M, pH 6.0), 1.0 ml solution of the test substance (10 μmol) in acetone, and 0.4 ml solution of 4-(4-nitrobenzyl)-pyridine was left to react in a water bath at 37° C for 1-3 h. The reaction solution was then cooled in an ice bath and 2.0 ml acetone, 5.0 ml ethyl acetate, and 1-5 ml 0.25 N NaOH was added (color development did not begin until NaOH was added). The solution was shaken 20 times and the phases were allowed to separate. A part of the upper phase was removed with a Pasteur pipette and transferred to a dry 1-cm cuvette. The extinction was measured at 540 nm.

Mouse toxicity studies. Male and female Ha/ICR mice (4-8 weeks of age, 20-30 g body wt.) were treated with single and multiple (daily for 5 consecutive days) i.p. or p.o. doses of CGP 6809 dissolved in distilled water; 10-15 animals were used per dose and all were monitored for 60 days. The LD₁₀, LD₅₀, and LD₉₀ of CGP 6809 were determined from the survival data. Confidence limits (95%) of LD₅₀ were determined by the method of Wilcoxon and Litchfield [24]. Swiss mice were used for the determination of myelosuppressive effects. Blood cell counts [red blood count (RBC), white blood count (WBC), platelets] as well as tibial bone marrow (TBM) tests were carried out individually on six and three mice in the treated and control groups, respectively, at time points indicated in the tables.

Tumors and animals. CGP 6809 was tested for antitumor activity in mice and rats in various ascitic and solid tumors. The mice and rats, tumors, transplantation sites and

number of tumor cells injected are listed in the result tables. For experiments with leukemias and ascites tumors, ascites was taken from the passage animals 7 days after transplantation, counted in a TOA CC-108 Microcell Counter, and diluted with Hanks' solution to appropriate concentrations. For experiments with solid tumors, tumors of about 20-40 mm diameter were excised from the passage animals under sterile conditions about 2 weeks after transplantation. They were minced, diluted with Hanks' solution, and injected s.c. into the animals' left flank or i.m. into the left hind leg. The human xenografts, lung carcinoma MBA 9812 and melanoma WM 47, were excised from the passage animals 2-3 weeks after transplantation, depending on the individual tumor line. Pieces of tumor of about 25 mg each were transplanted by trocar into the left flank of athymic BALB/c nude mice.

Experimental conditions. After tumor transplantation, the animals were allotted at random to treatment and control groups of 10 each. They were kept in macrolon cages with free access to food and water in air-conditioned rooms at a temperature of $23^{\circ} \pm 2^{\circ}$ C and a relative humidity of $55\% \pm 5\%$. Unless otherwise stated, treatment of mice with test compounds or placebo was started 4 h and that of rats, 24 h after tumor transplantation and continued for a time period as indicated in the result tables. Treatment of xenograft-bearing nude mice was started 3 days after transplantation and continued for 15 consecutive days. To speed up solubilization, CGP 6809 was solubilized with a few drops of ethanol and adjusted to final concentrations with double-distilled water immediately before use.

Parameter calculation and statistics. The antitumor activity of CGP 6809 was evaluated according to NCI Instruction 14 [9]. The mean tumor weight or ascites volume or the mean survival of drug-treated animals was multiplied by 100 and divided by the mean tumor weight or the mean survival of placebo-treated controls; the results were expressed as %T/C. The metastatic lung nodules in the experiments with solid Lewis lung carcinoma were evaluated according to a method described by Wexler [22]. The statistical analysis of the tumor data was carried out by means of the parametric Bartlett and Dunnett tests [6], or the nonparametric Steel test [18]. The test chosen depended on the result of the Shapiro-Wilk test [15], which discriminated data distributed normally (parametric) from nonparametric data.

Results

Physicochemical properties of CGP 6809

The structural formula of CGP 6809 is given in Fig. 1. It is a colorless to slightly creamy crystalline compound with a molecular weight of 321.3, a melting point of $89^{\circ}-90^{\circ}$ C, an optical rotation $[\alpha]+42^{\circ}\pm1^{\circ}$ (chloroform, c=1.022), and an UV absorption λ max. of 227.0 nm/log ϵ 3.827. This agent is soluble in most organic solvents and up to 2.5% in water. The pure compound has remarkably higher stability than other nitrosoureas such as BCNU, streptozotocin, or chlorozotocin and can be stored at room temperature for several months with no indication of decomposition. At 21° C, CGP 6809 shows maximal stability between pH 4.0 and 6.0, with half-lives of 4,591 and 2,853 h, respectively. At a temperature of 37° C (pH 6.0), the half-life

Scheme I:

Scheme II:

Fig. 2. Proposed reaction scheme of CGP 6809

of CGP 6809 dropped to approximately 45 h; this was still about 5 and 10 times longer than that observed for strepto-zotocine and BCNU, respectively. The analysis of the reaction mixture showed that CGP 6809 decomposed according to a known reaction [19] (Fig. 2, Scheme I), yielding as reactive intermediates the carbamoylating and alkylating moieties (II) and (III). The intermediate (III) gave volatile products, whereas one part of the isocyanate (II) hydrolyzed with water to the amine (IV), which was further carbamoylated to the symmetrical urea (V). This last compound and a trace of the amine (IV) were the only detectable products.

Under analogous reaction conditions (37° C, pH 7.4) in the presence of 2-phenylethylamine (Fig. 2, Scheme II), 46% of the 2-phenylethylamine was found to be carbamoylated with CGP 6809 and 32%, with CCNU within 24 h. Streptozotocin, which is known to have practically no carbamoylating activity [25], was not included in this experiment. CGP 6809 displayed alkylating activity comparable with that of streptozotocin, but which was weaker than that of CCNU or BCNU. Setting BCNU at 100%, the alkylating activity [23] of CCNU, streptozotocin, and CGP 6809 after 1 h at 37° C (pH 6.0), was 50%, 18%, and 19%, respectively.

Mouse toxicity studies

Table 1 shows a summary of lethality data. The LD_{10} was found to be nearly identical for male and female mice after a single i.p. treatment. The LD_{10} for five consecutive daily i.p. doses was roughly 3 times lower. A comparison of the total doses to induce death in 50% of female mice after a single i.p. dose or total multiple i.p. dose indicated

Table 1. Lethality of CGP 6809 in Ha/ICR mice

Sex	Route of administration	LD_{10}	LD ₅₀ (mg/kg)	LD_{90}	Confidence limits (95%) of LD ₅₀ ^a
			Single-dose study		
Male	i.p.	780	920	1,125	844-1,003
Female	i.p.	750	890	1,050	816- 970
Male	p.o.	1,075	1,450	1,975	1,306-1,610
Female	p.o.	600	1,125	2,150	953 – 1,328
		Multi	iple-dose study (daily	×5)	
Male	i.p.	245	375	580	305 - 461
Female	i.p.	285	375	500	310 - 454
Male	p.o.	685	970	1,375	844-1,116
Female	p.o.	670	790	930	561-1,113

^a Statistical evaluation according to Wilcoxon and Litchfield [24]

Table 2. Hematological parameters in male Swiss mice after single or multiple i.p. doses^a of CGP 6809

Treatment	Single dose ^b			Multiple dose (× 5) ^b				
	TBM (×10 ⁷)	RBC (×10 ⁶)	WBC (×10 ³)	Platelets (×10 ⁵)	TBM (×10 ⁷)	RBC (×10 ⁶)	WBC (×10 ³)	Platelets (×10 ⁵)
CGP 6809	0.22 ± 0.08	7.59 ± 1.04	1.60 ± 0.55	4.35 ± 0.54	1.17 ± 0.21	7.52 ± 0.30	7.56 ± 3.88	4.01 ± 0.72
Controls	1.64 ± 0.37	8.07 ± 0.95	6.90 ± 2.11	4.66 ± 0.35	1.50 ± 0.24	7.88 ± 0.71	7.21 ± 1.50	5.03 ± 0.99

^a Corresponding to LD₁₀ doses in male mice (see Table 1)

^b Determined 4 or 7 days, respectively, after the last doses

a less than cumulative pattern, as did the same data for male mice. The LD_{10} was somewhat higher for males than for females after single p.o. administration, but in the multiple-dose study nearly identical values were obtained for males and females. The multiple oral dose study indicated a less than cumulative pattern of lethality, as did the multiple i.p. study.

Myelosuppression induced by CGP 6809 was studied in Swiss mice using $1 \times$ and $5 \times$ treatment regimens at the corresponding LD₁₀ dose level (Table 2). Since male and female mice behaved quite similarly, only values for male mice are shown. At 4 days after a single injection, a decreased bone marrow cellularity and a lowered WBC count were readily apparent. By day 29 this myelosuppressive effect was fully reversed (data not shown). Daily injections on 5 consecutive days were — surprisingly — only marginally suppressive. No significant effects were observed on days 14 and 29 of the postobservation period.

Antitumor activity

Leukemias. The effect of CGP 6809 on the survival of female $B_6D_2F_1$ mice with leukemia L1210/ S_2 is shown in Table 3. CGP 6809 given p.o. or i.p. from days 1 to 4 significantly increased the survival of the mice. Intermittent treatment (days 0/3/6/9) also significantly increased the survival of mice with leukemia L1210/ S_2 . Both the p.o. and i.p. routes of administration were effective. CGP 6809 had no effect on the survival of mice with lymphatic leukemia CA55 or lymphoma $6C_3HED/S$, nor on that of rats with Dunning leukemia R3323 treated on a 4-day schedule (starting on day 1) with 250 or 125 mg/kg p.o. or i.p. (data not shown).

Ascites tumors. The pronounced activity of CGP 6809 after oral or i.p. treatment of mice and rats with various ascites tumors is shown in Table 4. The growth of Ehrlich ascites carcinoma in Tif: MAGf mice and of mastocytoma P815 in $B_6D_2F_1$ mice was markedly inhibited by both oral and i.p. administration of CGP 6809. Yoshida ascites hepatomas AH 66 (Table 4) and AH 130 (data not shown) in male Wistar rats were found to be extremely sensitive to CGP 6809 over a wide dose range. Oral administration of 31.3 mg/kg to rats with Yoshida hepatoma AH 66 or AH 330 inhibited the tumor growth completely.

Dose-response relationships showed a linear pattern. The smallest fully effective i.p. dose against both Yoshida hepatomas AH 66 and AH 130 was 6.25 mg/kg; again, linear dose-response relationships were observed. Much higher doses were needed to inhibit the growth of the

Table 3. Effect of CGP 6809 on survival of B₆D₂F₁ mice with leukemia L1210/S₂

Dose (mg/kg)	Schedule (days) ^a	Surviva (% T/C
250 p.o.	1-4	143*
125 p.o.	1-4	129*
250 i.p.	1-4	187*
125 i.p.	1-4	133*
625 p.o.	0/3/6/9	163*
400 i.p.	0/3/6/9	163*

^a Days after i.p. transplantation of 1 × 10⁶ cells

Yoshida hepatoma AH 7974 (Table 4). This result is particularly interesting since Ichimura [8] has reported that this tumor is resistant to BCNU and CCNU and only marginally sensitive to ACNU.

Solid tumors. Table 5 summarizes the activity of CGP 6809 against various solid tumors in mice and rats. Pronounced

Table 4. Effect of CGP 6809 on ascites tumors in mice and rats

Tumor	Dose ^a $(mg/kg \times 4)$	Ascites volume ^t (% T/C)	
Ehrlich carcinoma	250 p.o.	34*	
(MAG: Tif mice)	250 i.p.	0*	
	100 i.p.	46*	
Mastocytoma P815	250 p.o.	38*	
$(\mathbf{B}_6\mathbf{D}_2\mathbf{F}_1 \operatorname{mice})$	125 p.o.	55*	
	100 i.p.	41*	
	50 i.p.	56*	
Yoshida hepatoma AH 66	31.3 p.o.	0*	
(Wistar rats)	15.6 p.o.	5*	
	7.8 p.o.	50*	
	3.9 p.o.	91	
	6.3 i.p.	0*	
	3.1 i.p.	30*	
	1.6 i.p.	80	
Yoshida hepatoma AH 7974	250 p.o.	32*	
(Wistar rats)	125 p.o.	55*	
	100 i.p.	19*	
	50 i.p.	30*	

 $^{^{\}pm}$ Treatment: 4 h after i.p. transplantation of 1×10^6 cells and once daily for 3 consecutive days

Table 5. Effect of CGP 6809 on various solid tumors in mice and rats

Tumor	Dose ^a (mg/kg)		Tumor weight (% T/C)	
Harding-Passey melanoma (BALB/c mice)	125 62.5 125 62.5	$\times 8$ i.p.	18* 48* 11* 23*	
B16 melanoma (C ₅₇ B1/6 mice)	250 125 250 125	× 15 p.o. × 15 p.o. × 15 i.p. × 15 i.p.	10* 40* 28* 71	
11095 prostate carcinoma	250	×4 p.o.	1*	
(F344 rats)	50	×4 i.p.	72	
Guerin T8 uterus epithelioma	250	×4 p.o.	55*	
(Wistar rats)	125	×4 i.p.	64	
Walker carcinosarcoma 256	125	×4 p.o.	69	
(Wistar rats)	125	×4 i.p.	27*	
R3230 AC mammary carcinoma (F344 rats)	125	× 10 p.o.	78	
	125	× 10 i.p.	64*	
Rous sarcoma/S-R	250	× 8 p.o.	40*	
(Wistar rats)	125	× 8 i.p.	79	

^a Start of treatment: 24 h after s.c. transplantation of 0.2 ml (mice) or 1.0 ml (rats) tumor suspension in Hanks' solution 1:10

^{*} $2 \tilde{P} < 0.001$, Dunnett test

^b 10 days after transplantation

N = 10 per treatment or control group

^{* 2} *P* < 0.01, Dunnett test

N = 10 per treatment or control group

^{* 2} P < 0.01, Dunnett test

effects were seen against the Harding-Passey melanoma and the B16 melanoma in mice. CGP 6809 was only marginally active against the mouse mammary adenocarcinomas 775 and 2661/61 (data not shown). CGP 6809 also inhibited the growth of the androgen-independent prostate carcinoma 11095 but was only moderately active against the uterus epithelioma Guerin T8, Walker carcinosarcoma 256, mammary adenocarcinoma R3230 AC, and Rous sarcoma/S-R in rats.

Human xenografts. The human lung carcinoma MBA 9812 was significantly inhibited in a dose-dependent manner by oral treatment with CGP 6809 (Fig. 3). Almost complete arrest of the growth of human melanoma WM 47 was obtained by oral and i.p. treatment (Fig. 4). After the cessation of treatment, the tumor growth remained arrested during the postobservation time of 10 days.

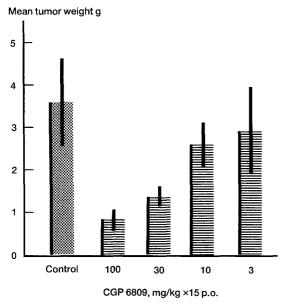


Fig. 3. Mean tumor weight of s.c. transplanted human lung carcinoma MBA 9812 after a 15-day oral treatment course with various doses of CGP 6809

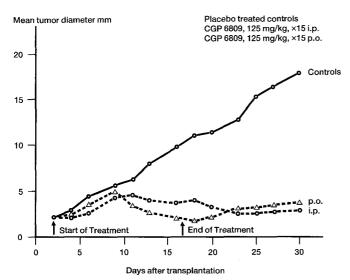


Fig. 4. Effect of CGP 6809 on the growth of s. c. transplanted human melanoma WM47 in female BALB/c nu/nu mice

Table 6. Effect of CGP 6809 and various cytostatics, alone or in combination, on tumor growth and lung metastases in $C_{57}Bl/6$ mice with i.m. transplanted Lewis lung carcinoma

Dose (mg/kg)	Tumor weight ^a (% T/C)	Number of metastatic lung nodules, median (range)
_	100	100 (70 – 139)
125×10 p.o.	101	0 (0)
$100 \times 2 \text{ i.p.}$ $125 \times 10 \text{ p.o.}$	53*	0 (0-3)
+ ^	11*	0 (0-2)
$100 \times 2 \text{ i.p.}$, .
	100	123 (40 – 187)
125×10 p.o.	97	1 (0-4)
$100 \times 2 \text{ i.p.}$ $125 \times 10 \text{ p.o.}$	51*	0 (0-11)
+ 100 × 2 i.p.	33*	0 (0)
- .	100	134 (91 – 195)
$125 \times 10 \text{ p.o.}$	97	7 (0-19)
20×2 i.p.	71	32 (2-65)
+ 20 ×2 i.p.	33*	0 (0-2)
	(mg/kg) - 125 ×10 p.o. 100 ×2 i.p. 125 ×10 p.o. + 100 ×2 i.p 125 ×10 p.o. 100 ×2 i.p. 125 ×10 p.o. + 100 ×2 i.p. 125 ×10 p.o 125 ×10 p.o. + 100 ×2 i.p 125 ×10 p.o. +	(mg/kg) weighta (% T/C) - 100 125 × 10 p.o. 101 100 × 2 i.p. 53* 125 × 10 p.o. + 11* 100 × 2 i.p 100 125 × 10 p.o. 97 100 × 2 i.p. 51* 125 × 10 p.o. + 33* 100 × 2 i.p 100 125 × 10 p.o. 97 20 × 2 i.p. 71 125 × 10 p.o. 97 20 × 2 i.p. 71 125 × 10 p.o. + 33*

^a On day 21 after tumor transplantation. Treatment: CGP 6809, 5 times weekly for 2 weeks; cyclophosphamide, 5-Fluorouracil or chlorambucil, day 1+7 after tumor transplantation

Combination chemotherapy: Female C₅₇BL/6 mice with Lewis lung carcinoma were treated with CGP 6809 alone or in combination with cyclophosphamide, 5-fluorouracil, or chlorambucil. As shown in Table 6, the growth of Lewis lung carcinoma was not inhibited by oral treatment with CGP 6809 alone, whereas a pronounced inhibition of lung metastasis was noted. However, a combination of CGP 6809 with cyclophosphamide caused a significantly more pronounced growth inhibition of the primary tumors than either drug alone. In a survival experiment with Lewis lung carcinoma (Fig. 5), this drug combination

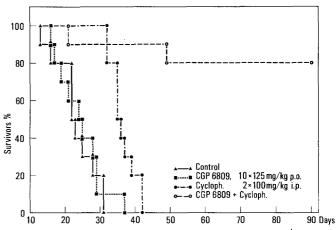


Fig. 5. Survival time of C57BL/6 mice with i.m. transplanted Lewis lung carcinoma after treatment with CGP 6809 (days 1-5 and 8-12) and cyclophosphamide (days 1 and 7) alone and in combination

^{* 2} P < 0.01, Dunnett test

caused 80% long-term survivors (>90 days) in contrast to the single-drug application. Increased inhibition of tumor growth was also seen in the same model (Table 6) after treatment with CGP 6809 combined with 5-fluorouracil or chlorambucil; however, long-term survival was not achieved with these combinations.

Discussion

CGP 6809 is a nitrosourea compound that is structurally and functionally different from known clinically investigated nitrosoureas such as CCNU, MeCCNU, ACNU, GANU, and RFCNU. As a methylnitrosourea derivative, it is related to streptozotocin, from which it differs in the structure of the sugar moiety and the position of the nitrosourea residue. This structural property may explain some of the qualities that were noted with respect to both the biological activity and the tolerability of this compound.

The biological activity of CGP 6809 is distinct from that of compounds such as BCNU and ACNU. It is inferior compared with the latter drugs in achieving long-time survival in murine leukemia models. However, in the Ehrlich and Yoshida ascites tumors, complete responses at tolerated doses were achieved; partial responses were seen in a resistant substrain of Yoshida hepatoma, AH7974, where BCNU and CCNU were ineffective [8]. The compound was also surprisingly active at tolerated doses in solid transplantable murine melanomas such as the Harding-Passey and B16 melanoma, and it possessed remarkable activity against the human melanoma WM47. Good activity was also seen in the solid rat 11095 prostate carcinoma, whereas mammary carcinoma lines as well as the Guerin-T8 uterus epithelioma and the Rous sarcoma/S-R were relatively insensitive to CGP 6809.

No effect was seen on the primary tumor in the solid Lewis lung carcinoma implanted i.m. or s.c. However, a marked and dose-dependent effect on the development of metastases was readily apparent with a treatment schedule starting 24 h after inoculation of the tumor. In the same model, several compounds (cyclophosphamide, 5-fluorouracil, chlorambucil) showed markedly increased efficacy when combined with CGP 6809, resulting in partial responses of the primary tumor and almost total eradication of metastases. Also, survival of mice treated with a combination of cyclophosphamide and CGP 6809 was far longer (resulting in 80% long-term survivors) than that of mice treated with either of the single agents. These additive therapeutic effects of the drug combinations may be clinically exploitable since CGP 6809 has a different toxicity profile than its combination partners (see below). CGP 6809 was also significantly active against the human lung carcinoma MBA9812 as well as various human tumor xenografts, as previously reported by Fiebig et al. [7].

To shed some light on the potential mechanism of action of CGP 6809, its chemical decomposition rate in aqueous solution and its alkylating and carbamoylating activities were determined in comparison with those of BCNU, CCNU, and streptozotocin. It could be shown that CGP 6809, due to a partially substituted sugar residue, possesses a significant carbamoylating activity, comparable with that of CCNU.

Classically, the alkylating property of nitrosoureas is believed to be mainly responsible for their antitumor effects, whereas their carbamoylating activity is believed to determine their toxic qualities [2, 23]. These conclusions, which were mainly based on findings in ascites tumor models, cannot be generalized, as shown with CGP 6809. The present study showed that this type of compound, despite its low alkylating activity, exerted strong antitumor activity in a broad spectrum of transplantable solid murine tumors as well as human xenografts.

As demonstrated in the toxicity studies, this antitumor activity was achieved at fully tolerated doses. Myelosuppression was relatively modest, particularly (and surprisingly) on the multiple-dose regimen, and readily reversible. Several other characteristics add to these attractive properties. First, CGP 6809 appeared to be devoid of diabetogenic activity. Single doses of 500 mg/kg i.p. or 1,000 mg/kg p.o. were well tolerated in this respect (data not shown); this finding confirms results previously reported by Bernacki et al. [2]. Second, the compound was also practically devoid of mutagenic activity when tested on strains TA98, TA98/TCTO, and TA1537 of Salmonella typhimurium (data not shown). Thirdly, no symptoms of embryotoxicity or teratogenicity were detected when the compound was given s.c. to pregnant Sprague-Dawley rats during days 8-13 post coitum at a dose of 6×150 mg/kg body wt.

The overall profile of CGP 6809 warrants clinical development, which until now has led to phase I clinical trials in terminal cancer patients. These trials confirmed the generally good tolerability of the drug and established dose-limiting hepatotoxicity at 4,500 mg/m² when given i.v. every 6 weeks. One colon carcinoma patient responded to the highest dose tested. Further trials using lower doses at 2-week intervals are under way [4, 5].

Acknowledgements. The skilled technical assistance of Ms G. Hartmann, Mr. J. Fuchs, and Mr. M. Gaugler is gratefully acknowledged. We are also indebted to Dr. A. Walter for all measurements concerning drug stability.

References

- 1. Anderson T, McMenamin MG, Schein PS (1975) Chlorozotocin, 2-[3-(2-chloro-ethyl)-3-nitrosoureido]-p-glucopyranose, an antitumor agent with modified bone marrow toxicity. Cancer Res 35: 761-765
- Bernacki RJ, Wilson GL, Mossman BT, Angelino N, Kanter PM, Korytnyk W (1985) Therapeutic and diabetogenic potential of two newly synthesized nitrosoureido sugars. Cancer Res 45: 695-702
- 3. Bono VH (1976) Review of mechanism of action studies of the nitrosoureas. Cancer Treat Rep 60: 699-702
- Creaven PJ, Plager JE, Cowens JW, Madajewicz S, Pendyala L, Mittelman A, Petrelli N, Herrera L, Karakousis C, Razak M, Takita H, Huben R, Cushman K (1986) Phase I trial of ethyl-6-deoxy-3,5-di-O-methyl-6-(3-methyl-3-nitrosoureido)-α-p-glucofuranoside (CGP 6809 EDMN). Abstract. Proc Am Soc Clin Oncol 141: 36
- Creaven PJ, Madajewiczs S, Wayne C, Plager JE, Pendyala L, Mittelman A, Petrelli N, Karakousis C, Huben R, Takita H, Razack MS, Solomon J (1987) Phase I clinical trial of ethyl-6-deoxy-3,5-di-O-methyl-6-(3-methyl-3-nitroso-ureido)-alphap-glucofuranoside (CGP 6809). Cancer Chemother Pharmacol 20: 37-40
- Dunnett CW (1964) New tables for multiple comparison with a control. Biometrics 20: 482-491
- Fiebig HH, Widmer KH, Löhr GW (1987) CGP 6809 A new nitrosoureido-sugar derivative with activity in human tumor xenografts. Cancer Chemother Pharmacol 23: 337
- Ichimura H (1975) Experimental studies on a screening system of anticancer drugs employing the rat ascites hepatoma spectrum. Cancer Chemother 2: 605-609

- NCI (1981) Instruction 14 (Rev 8/81). Automated Information Service, Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Silver Springs, Md
- Ogawa M, Fujimoto S (1981) Current status of nitrosoureas under development in Japan. In: Carter SK, Sakurai Y, Umezawa H (eds) Recent results in cancer research, vol 76. New drugs in cancer therapy. Springer, Berlin Heidelberg New York, pp 115-124
- Panasci LC, Green D, Nagournay R, Fox P, Schein PS (1974)
 A structure-activity analysis of chemical and biological parameters of chloroethylnitrosoureas in mice. Cancer Res 37: 2615-2618
- 12. Sava G, Giraldi T (1983) Antitumor effects of GANU and other nitrosourea derivatives against transplantable leukemias and solid tumors in mice. Cancer Chemother Pharmacol 10: 167-169
- 13. Schabel FM (1976) Nitrosoureas: a review of experimental antitumor activity. Cancer Treat Rep 60: 665-698
- 14. Schieweck K, Stanek J, Schmidt-Ruppin KH (1982) Effects of a new nitrosoureido-sugar derivative, CGP 6809. Abstract 2191, Proceedings of the 13th International Cancer Congress, September 8-15, p 385
- 15. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52: 591-610
- 16. Shimizu F, Arakawa M (1978) Antitumor activity of 3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-1-(2-chloroethyl)-1-nitrosourea hydrochloride in a variety of experimental tumors. Gann 69: 545-548

- Skipper HE, Schabel FM Jr, Trader MW, Thomson JR (1961)
 Experimental evaluation of potential anticancer agents:
 IV. Anatomical distribution of leukemic cells and failure of chemotherapy. Cancer Res 21: 1154-1164
- 18. Steel RGD (1959) A multiple comparison rank sum test:treatment versus control. Biometrics 15: 560-572
- Tew KG, Smulson ME, Schein PS (1981) Molecular pharmacology of nitrosoureas. In: Carter SK, Sakurai Y, Umezawa H (eds) Recent results in cancer research, vol 76. New drugs in cancer chemotherapy. Springer, Berlin Heidelberg New York, pp 130-140
- Wang A, Tew KD, Byrne PJ, Schein PS (1981) Biochemical and pharmacological properties of nitrosoureas. Cancer Treat Rep 65 [Suppl 3]: 119-124
- 21. Weiss RB (1982) Streptozotocin. A review of its pharmacology, efficacy and toxicity. Cancer Treat Rep 66: 427-438
- Wexler H (1974) Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst 36: 641-643
- Wheeler GP, Bowdon BJ, Grimsley JA, Lloyd HH (1974) Interrelationships of some chemical, physicochemical, and biological activites of several 1-(2-haloethyl)-1-nitrosoureas. Cancer Res 34: 194-200
- Wilcoxon F, Litchfield JJ Jr (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96: 99-113
- Wiley PF, Herr RR, Jahnke HK, Chidester CG, Mizsak SA, Spaulding LB, Argudellis AD (1979) Streptocotocin: structure and chemistry. J Org Chem 44: 9-16

Received November 19, 1987/Accepted November 25, 1988